Monopolar and dipolar relaxation in spin ice Ho₂Ti₂O₇

Yishu Wang, T. Reeder, Y. Karaki, J. Kindervater, T. Halloran, N. Maliszewskyj, Yiming Qiu, J. A. Rodriguez, S. Gladchenko, S. M. Koohpayeh, S. Nakatsuji, C. Broholm, <u>Sci. Adv. 2021; **7**: eabg0908 (2021).</u>

Scientific Achievement

Two distinct magnetic relaxation processes were discovered in the spin-ice compound $Ho_2Ti_2O_7$. The cross-over in the relaxation dynamics is associated with spin fractionalization into monopoles.

Significance and Impact

While dipolar relaxation dominates at higher T, a unique low T regime with exponentially activated Debye-like relaxation is associated with monopole motion through the spin-ice vacuum.

Research Details

- A time resolved neutron scattering technique was developed to probe slow magnetic dynamics (ms to hours) with atomic scale spatial resolution
- A new class of ultra-pure Ho₂Ti₂O₇ crystals grown by a travelling solvent floating zone method was needed to manifest individual monopole dynamics
- Observing this regime in Ho₂Ti₂O₇ is encouraging for the prospects of coherent quantum dynamics of monopoles
 in quantum siblings such as Ce₂Zr₂O₇

ENERGY Office of Science

INSTITUTE FOR QUANTUM MATTER EFRC DE-SC0019331

Spin ice and magnetic monopoles at zero magnetic field

- Spin ice: ferromagnetic Ising spins + pyrochlore lattice \rightarrow 2-in-2-out
- Zero-field neutron scattering reveals absent diffraction at Brillouin zone centers and diffuse intensity at zone boundaries.
- Successive spin-flips via quantum tunneling should fractionalize a spin dipole into a pair of magnetic monopoles.

Time-resolved neutron scattering under a small field

- Spin ice ground state is unperturbed. ($\mu H \le k_B T$, J_{eff})
- Spins aligned along the field direction give rise to magnetic scattering at the zone centers.

Science

The magnetization process relies on the thermal 2 excitation. Н 250 Oe zero-H **Arrhenius form** 2.1 10⁵ (JOO $\tau = \tau_0 \exp\left(\frac{\Delta}{T}\right)$ (00L) 2.0 $(s)_{\perp} 10^2$ 1.9 2 Bragg peaks $\Delta I({\bf Q},t)d^2Q$ counts $(a^*)^2/s$ ∆ = 18(2) K J_{eff} ~ 1.8 K 10^{-1} 3 = 0.95K 1.2 0.6 0.8 1.0 T = 0.95 KT (K) -2 250 Oe - zero-H -3 2 10 15 20 5 0 (HH0) Δt (s) INSTITUTE FOR QUANTUM MATTER .S. DEPARTMENT OI Office of

EFRC DE-SC0019331

3

zero-H

AC susceptibility in a broad range of T and frequency

Thermal crossover revealed by AC susceptibility

Sensitivity to disorder

- Reduced disorder slows dynamics, making two time-scales experimentally distinguishable
- Debye relaxation is approached at low-T in the pure crystal.

