17. Control of Hall effect by strain in Weyl semimetal Mn3Sn

June 2022


IQM scientists have shown that the sign and magnitude of the Hall conductivity in Mn3Sn can be controlled by the application of uniaxial strain.

“Control of Hall effect by strain in Weyl semimetal Mn3Sn,” M. Ikhlas, S. Dasgupta, F. Theuss, T. Higo, S. Kittaka, B. J. Ramshaw, O. Tchernyshyov, C. W. Hicks, S. Nakatsuji, Nat. Phys. 18, 1086–1093 (2022).

16. Bulk superconductivity in the Dirac semi-metal LaCuSb2

March 2022


Following IQM evidence that LaCuSb2 is a Dirac semi-metal, bulk superconductivity is documented and characterized in a single crystal of this material.

Bulk superconductivity in the Dirac semi-metal LaCuSb2“, C. J. Lygouras, J. Chamorro, T. Berry, T. J. Halloran, J. Zhang, K. Mikuri, J. Gouchi, Y. Uwatoko, S. Nakatsuji, K. Livi, M. Siegler, Yi Li, C. L. Broholm, T. M. McQueen, unpublished (2022).

15. Field induced quantum spin-liquid states in a more ideal Kitaev material: BaCo2(AsO4)2

December 2021


Using time-domain terahertz spectroscopy we find evidence that the honeycomb cobalt-based Kitaev “quantum spin liquid” (QSL) candidate, BaCo2(AsO4)2, has domina nt Kitaev interactions. Due to only small non-Kitaev terms, a magnetic continuum consistent with Majorana fermions and the existence of a Kitaev QSL can be induced by a small 4 T primarily out-of-plane-magnetic field.

“In- and out-of-plane field induced quantum spin-liquid states in a more ideal Kitaev material: BaCo2(AsO4)2”, Xinshu Zhang, Yuanyuan Xu, T. Halloran, Ruidan Zhong, R. J. Cava, C. Broholm, N. Drichko, N. P. Armitage, Nat. Mater. 22, 58–63 (2022)

14. Monopolar and dipolar relaxation in spin ice Ho2Ti2O7

July 2021


While dipolar relaxation dominates at higher T, a unique low T regime with exponentially activated Debye-like relaxation is associated with monopole motion through the spin-ice vacuum. Observing this regime in Ho2Ti2O7 is encouraging for the prospects of coherent quantum dynamics of monopoles in quantum siblings such as Ce2Zr2O7.

“Monopolar and dipolar relaxation in spin ice Ho2Ti2O7”, Yishu Wang, T. Reeder, Y. Karaki, J. Kindervater, T. Halloran, N. Maliszewskyj, Yiming Qiu, J. A. Rodriguez, S. Gladchenko, S. M. Koohpayeh, S. Nakatsuji, C. Broholm, Science Adv. 7, eabg0908 (2021).

13. Duality and domain wall dynamics in a twisted Kitaev chain

April 2021


The Ising chain in a transverse field is a paradigmatic model for a host of physical phenomena, including spontaneous symmetry breaking, quantum criticality and duality. Although the quasi-one-dimensional ferromagnet CoNb2O6 has been regarded as the Ising chain’s best material realization, it exhibits substantial deviations from ideality. By combining terahertz spectroscopy and calculations, we show that CoNb2O6 is in fact described by a different model with bond-dependent interactions, which we call the ‘twisted Kitaev chain’, as these interactions are similar to those of the honeycomb Kitaev spin liquid.

“Duality and domain wall dynamics in a twisted Kitaev chain,” C. M. Morris, Nisheeta Desai, J. Viirok, D. Huvonen, U. Nagel, T. Room, J.W. Krizan, R. J. Cava, T. M. McQueen, S. M. Koohpayeh, Ribhu K. Kaul, and N. P. Armitage, Nat. Phys. 17, 832–836 (2021).

12. Incommensurate magnetism mediated by Weyl fermions

December 2020

highlight december 2020

A detailed example of rare earth magnetism mediated by topologically protected Weyl fermions is provided. Introducing NdAlSi, which lacks inversion symmetry, the unique physical properties that may arise from the interplay between electronic interactions and topology are identified.

“Incommensurate magnetism mediated by Weyl fermions in NdAlSi” Jonathan Gaudet, Hung-Yu Yang, Santu Baidya, Baozhu Lu, Guangyong Xu, Yang Zhao, Jose A. Rodriguez, Christina M. Hoffmann, David E. Graf, Darius H. Torchinsky, Predrag Nikolić, David Vanderbilt, Fazel Tafti, and Collin L. Broholm, arXiv:2012.12970, (2020).

11. Interfacing a Dirac semimetal with magnetism

July 2020


We have measured Fermi-energy-dependent quantum transport in electrostatically-gated thin films of the Dirac semimetal Cd3As2 interfaced with a ferromagnet.

Preprint of publication is forthcoming and will be linked here when available.

10. Room-temperature THz anomalous Hall effect in Weyl antiferromagnet Mn3Sn films

May 2020


Using time-domain THz spectroscopy and polarimetry, we have measured the magneto-optical response of the Weyl AF Mn3Sn. A large anomalous Hall conductivity |σxy|~20 Ω- 1cm-1 at THz frequencies is clearly observed as polarization rotation. Gapping of the Fermi surfaces is apparent due to translation symmetry breaking in the helical phase.

“Terahertz conductivity of the magnetic Weyl semimetal Mn3Sn films,” B. Cheng, Y. Wang, D. Barbalas, T. Higo, S. Nakatsuji, and N. P. Armitage, Applied Physics Letters, 115, 012405 (2019).

“Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films,” T. Matsuda, N. Kanda, T. Higo, N. P. Armitage, S. Nakatsuji, and R. Matsunaga, Nature Communications 11, 909 (2020).

9. Magnons from molecular spins in chiral Cu20Se03

March 2020

magnons chart

The asymmetric magnetic interactions that control the low energy excitations and the skyrmionic spin texture of Cu2OSeO3 were determined using inelastic neutron scattering and a coarse-grained description of this chiral breathing pyrochlore ferrimagnet.

“Low energy magnons in the chiral ferrimagnet Cu2OSeO3: a coarse-grained approach,” Yi Luo, G. G. Marcus, B. A. Trump, J. Kindervater, M. B. Stone, J. A. Rodriguez-Rivera, Yiming Qiu, T. M. McQueen, O. Tchernyshyov, and C. Broholm, Phys. Rev. B 101, 144411 (2020).

8. Anti-chiral spin order its Goldstone modes and their hybridization with phonons in the topological semimetal Mn3Ge

January 2020

anti-chiral graphs

The anti-chiral spin structure of Mn3Ge and its low energy excitations were determined using neutron scattering techniques. We developed a field theory of long-wavelength spin waves for Mn3Ge and establish a spin-Hamiltonian model, which accounts for the spin order and low energy excitations. We identify two magneto-elastic modes that indicate an intimate relationship between strain, magnetism and transport in Mn3Ge.

“Antichiral spin order its Goldstone modes and their hybridization with phonons in the topological semimetal Mn3Ge,” Y. Chen, J. Gaudet, S. Dasgupta, G. G. Marcus, J. Lin, T. Chen, T. Tomita, M. Ikhlas, Y. Zhao, W. C. Chen, M. B. Stone, O. Tchernyshyov, S. Nakatsuji, C. Broholm, Phys. Rev. B 102, 054403, (2020).

7. Axion Magnetoelectric Coupling in the Hybrid Wannier Representation
January 2020

wannier graphs

A large class of topological insulators (TIs) is characterized by the presence of a quantized magneto-electric (ME) “axion” coupling. We have developed a detailed theory connecting this axion coupling to features of the hybrid Wannier (HW) representation, which has emerged as one of the most important theoretical tools for understanding TIs.

“Axion coupling in the hybrid Wannier representation,” N. Varnava, I. Souza, D, Vanderbilt, Phys. Rev. B 101, 155130 (2020).

6. Dirac Fermions and Possible Weak Antilocalization in LaCuSb2
December 2019

mock up of dirac

We predicted and then experimentally showed that LaCuSb2, previously reported to be superconducting, hosts Dirac fermions with an effective mass of 0.06 me.

“Dirac fermions and possible weakantilocalization in LaCuSb2,”  J. R. Chamorro, A. Topp, Y. Fang, M. J. Winiarski, C. R. Ast, M. Krivenkov, A. Varykhalov, B. J.Ramshaw, L. M. Schoop, and T. M. McQueen, APL Mater. 7, 121108, (2019).

5. Probing Magnon Dynamics and Interactions in a Ferromagnetic Spin-1 Chain
December 2019


Using time-domain THz spectroscopy, we measure the low-energy EM response of the spin-1 ferromagnetic spin chain NiNb2O6 as a function of temperature and external magnetic field. Prominent magnetic excitations are seen at low T.  As we warm the system, we unexpectedly observe a T dependent renormalization of the lowest energy spin-excitation, which has a strong dependence on field direction. Using theoretical arguments, exact diagonalizations and finite temperature dynamical Lanczos calculations, we connect this renormalization to a picture of magnon-magnon interactions.

“Tunable Magnon Interactions in a Ferromagnetic Spin-1 Chain,” P. Chauhan, F. Mahmood, H. J. Changlani, S. M. Koohpayeh, and N. P. Armitage, Phys. Rev. Lett. 124, 037203 (2020).

4. Antiferromagnetic Domain Walls in Ferromagnetic Yb2Ti2O7
December 2019

Pechan chart

We show that ferromagnetic and antiferromagnetic states are nearly degenerate in the frustrated quantum magnet Yb2Ti2O7. The long range nature of dipole interactions consequently induce a mixed FM/AFM state at low fields where AFM slabs serve as domain walls. Read the article commentary by Sylvain Petit in PNAS.

“Multiphase Magnetism in Yb2Ti2O7,” A. Scheie, J. Kindervater, S. Zhang, H.J. Changlani, G. Sala, G. Ehlers, A. Heinemann, G. S. Tucker, S.M. Koohpayeh, C. Broholm, Proceedings of the National Academy of Sciences, 202008791, (2020).

3. Yi Li’s Work on Itinerant Ferromagnetism Featured in Quanta Magazine
January 2019


Yi Li’s group’s work (supported by IQM funding) about itinerant ferromagnetism is featured by Quanta Magazine in an article titled “A Child’s Puzzle Has Helped Unlock the Secrets of Magnetism.”

“Exact results on itinerant ferromagnetism and the 15-puzzle problem,” E. Bobrow, K. Stubis, Y. Li, Phys. Rev. B. 98, 10.1103 (2018).

2. New trimer-based spin liquid candidates
December 2018


A previously unreported family of materials has been discovered with unconventional magnetic properties that are consistent the realization of the quantum spin liquid. The materials consist of triangular lattices of magneticntrimer molecules of the form Rh3O12 and Ir3O12 with 4d and 5d electron based magnetism.

“Trimer-based spin liquid candidate Ba4NbIr3O12,” Nguyen, L. T., Cava, R. J., Phys. Rev. Materials, 3 (1), 014412, (2019).

1. IQM study of Quantum Spin Fluctuations Highlighted by DOE
December 2017

IQM Study

A recent IQM study of quantum spin fluctuations in Pr2Zr2O7 that was published in Physical Review Letter was highlighted by DOE. This was the thesis work of Jiajia Wen who is now at SLAC.

“Disordered route to the Coulomb quantum spin liquid: Random transverse fields on spin ice in Pr2Zr2O7,” J. J. Wen, S. M. Koohpayeh, K. A. Ross, B. A. Trump, T. M. McQueen, K. Kimura, S. Nakatsuji, Y. Qiu, D. M. Pajerowski, J. R. D. Copley, and C. L. Broholm, Phys. Rev. Lett. 118, 107206 (2017).